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Figure 1 Phase diagram of the blend of PWPVME and associated glass
transition temperatures. Continuous lines are guides for the eyes

calorimetry (Perkin Elmer DSC 7) at a heating rate of
20 K min ”l. The composition dependence of T~ for a
homogeneous blend is reported in Figure 1.

Cloud points are measured from the chart e in scattered
Fintensity recorded at large q (9.5 10-4 cm– ) with a slow

heating rate (2 K rein-l). The corresponding binodal is
reported on Figure 1.

Spinodal decomposition is triggered by a T jump from
just below the binodal to a temperature above the spinodal
and the scattered intensity recorded at variable q as a
function of time t (see phase diagram). For n.m.r.
measurements, films which have undergone the same heat
treatment to the variable time t are rapidly quenched
between two cold thick metallic plates.

Theoretical background
spinodal decomposition. Within the spinodal regime

phase separation of a mixture of polymer is expected to
proceed by continuous growth of the amplitude of com-
position fluctuations. The kinetics of the mechanisms of
spinodal decomposition has been treated by Cahn16 who
showed that the maximum growth rate of the fluctuations
occurs at a dominant mode wavelength. The Cahn kinetic
theory is a generalization of the diffusion equation in
inhomogeneous system. The starting point is the expression
of the free energy of a binary mixture which is written in the
incompressible limit as:

JF= [j(I$) + K(vc#)2 + -.]dv (1)

wherefio) accounts for the free energy of the system having
composition 4 of one component (in the homogeneous
system). The second term is the excess free energy resulting
from the concentration gradient. By taking the variational
derivative of equation (1) and applying the principle of
continuity one is led to the diffusion equation:

84
()

~=DC fi (2)

where DC is the translational diffusion coefficient of
molecules.

The solution of equation (2) is obtained as:

d(r) – W = Eexp[R(q)tl{A(q)cos(q.r)
with:

‘@=Dc’2{-(9-2(3)

where q = 27r/Xis the wavenumber of the spatial composi-
tion fluctuations and h is the corresponding wavelength.

Since the scattered intensity is shown to be proportional
to the square of the amplitude of the composition fluctuation
(r#I1– @J2, R(q) is easily calculated from tie time evolution
of the scattered intensity:

Z(q,t) = Z(q,t = O)exp[– 2R(q)t] (4a)

De Gennes17proposed a theory of spinodal decomposition
for incompressible, binary liquids composed of macro-
molecules in the context of the mean-field approximation.
For a symmetrical blend of A and B polymers with the same
degree of polymerization N = N~ = N~ and identical Kuhn
statistical segment lengths a = aA = aB this author can
derive the relaxation rate for the growth of fluctuations in
the linear SD regime as:

{

1 2

Nc+(1– 4) – 36;(;– 1)}
(5)

where A(q) is the Onsager coefficient, which is given by:

A(q) =N@(l – @)DC (6)

for the small q limit, i.e. for the case where SD is achieved
by translational diffusion of polymer molecules A and B
through the <<reputation>>process, DC is the self-diffusion
coefficient for translational diffusion of polymers, which
is predicted to scale as N–2. Thus from equation (5) and
equation (6), it follows that

‘(’)=’2DWW)’2‘7)
Consequently, in the general theory of Cahn

d2f x – Xs—
$ x~

and K = R~172 (8)

The parameter XSis the x parameter at spinodal tempera-
ture: XS = [2NCj(l-r#I)]”land R; is the unperturbed chain
dimension (R3 = Na2).

The linear theory can predict the wavenumber q~ of the
spatial composition fluctuations that grow most rapidly in
the SD regime and the maximum relaxation rate R(qJ.

‘ii = – (9)

R(qJ = – DC(~2f/&#2)/8i(

In the SD regime, (62j7&$2)is negative (the mixture being
unstable for the infinitesimal fluctuations), and hence R(q)
can be positive for values of q smaller than the critical q
(’c). -

So, plots of R(q)/q2 vs q2 based upon linear theory, allow
several parameters to be determined.

D,PP= —
()

x – X
‘ q.o = D — (lo)

X
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